JACK: Just-in-time Autonomous Cross-chain Kernel
A Formal Architecture for Intent-Based, Privacy-Preserving and
Policy-Enforced DeFi Execution

JACK Research Group

2026

Abstract

The rapid fragmentation of liquidity, execution venues, and state across heterogeneous
blockchain ecosystems has produced an execution-layer bottleneck for decentralized finance.
While bridges, aggregators, and routers enable cross-chain value movement, they do not
offer a unified, programmable execution abstraction nor a policy-enforced settlement layer.

This paper introduces JACK (Just-in-time Autonomous Cross-chain Kernel), a protocol-
level execution kernel that transforms high-level user intents into verifiable, privacy-preserving,
and policy-constrained cross-chain execution plans. JACK decouples intent expression,
solver-based execution, cryptographic constraint enforcement, and venue-specific settlement
adapters. We formalize an execution model in which off-chain autonomous agents coordi-
nate cross-chain execution under encrypted constraints and on-chain programmable market
policies, enabling Uniswap v4 hooks and similar venues to act as autonomous execution
controllers.

We present a formal intent language, solver competition model, encrypted constraint
evaluation layer, and a cryptographically verifiable execution pipeline. We further describe
a new DeFi execution algorithm that combines private constraint evaluation with public
settlement validation, enabling programmable market policy enforcement without revealing
execution strategies prior to settlement.

Contents

1 Introduction 3

2 System Architecture 3
2.1 Kernel Modelo 3

3 Intent Model 4
3.1 Formal Intent Definition 4
3.2 Public and Private Components 4
3.3 Constraint Vector 4

4 Solver-Based Execution 4
4.1 Solver Role e 4
4.2 Competition Model L 5

5 Privacy and Constraint Enforcement 5
5.1 Encrypted Constraint Evaluation 5
5.2 Constraint Proof Object o 5
5.3 FHE-Based Enforcement Layer 5

6 Cross-Chain Routing Layer
6.1 Routing Abstraction Lo
6.2 Multi-Hop Cross-Domain Execution

7 Settlement Adapter Layer
7.1 Venue Interface
7.2 Programmable Policy Venues oo

8 Policy-Enforced Market Execution
8.1 Hook as Policy Agent
8.2 Dual-Agent Architecture Lo

9 Execution Algorithm

10 Cryptographic Verification Pipeline
10.1 Execution Correctness 0 e e e
10.2 Public Verifiability

11 Adversarial Model

12 Security Properties

13 New DeFi Primitive: Policy-Constrained Private Execution
14 Implementation Notes

15 Evaluation and Benchmarks

16 Limitations and Future Work

17 Conclusion

1 Introduction

Decentralized finance has evolved from single-chain composability into a multi-chain execution
environment. However, the dominant user interaction paradigm remains transaction-centric:
users explicitly select routes, bridges, and execution venues. This model fails to scale across
heterogeneous ecosystems and exposes execution strategies to adversarial observation and ma-
nipulation.

JACK proposes a kernel-level abstraction in which users express execution intents rather
than transactions. Execution is delegated to autonomous solvers that compete to satisfy the
intent under cryptographically enforced constraints. Final settlement is performed by pro-
grammable on-chain execution venues equipped with policy logic (e.g., Uniswap v4 hooks).

JACK is designed as infrastructure, not as an application or market. It provides a general
execution substrate upon which specialized financial primitives—such as regional currencies,
treasury automation, or market making agents—can be built.

2 System Architecture
JACK is decomposed into five orthogonal layers:
1. Intent Layer
2. Solver and Coordination Layer
3. Privacy and Constraint Enforcement Layer

4. Execution Routing Layer

5. Settlement Adapter Layer

2.1 Kernel Model
The JACK kernel is formally defined as the tuple:

K =(I,5,C,R,V)

where:

7 denotes the intent representation system,

S denotes the solver set,

C denotes cryptographic constraint enforcement mechanisms,

R denotes cross-chain routing primitives,

V denotes settlement venues.

Each layer operates independently but exposes standardized interfaces to the kernel.

3 Intent Model

3.1 Formal Intent Definition

An intent is defined as:

I=(UAT,®Q)

where:

U is the user identifier,

A is the target asset or asset vector,

T is the destination execution environment,

® is the encrypted constraint vector,

Q) is the public execution envelope.

3.2 Public and Private Components
The intent is split into:
e a public descriptor I,,,;, containing routing compatibility information,

e a private descriptor I,.;, containing execution bounds and preferences.

I = (Ipuy, Enc(Ipriv))

This separation allows solvers to construct execution plans without access to sensitive strat-
egy parameters.

3.3 Constraint Vector
The private constraint vector contains:
e maximum slippage bounds,
e execution deadlines,
e minimum output guarantees,
e market policy restrictions,

e execution venue requirements.

4 Solver-Based Execution

4.1 Solver Role

Solvers act as autonomous agents which attempt to satisfy intents. A solver produces a candi-
date execution plan:

T = (r,re,. .., ,0)

where each r; is a routing or bridging primitive and v is a settlement venue.

4.2 Competition Model

Solvers compete by submitting commitments to execution plans. The kernel verifies:
1. compatibility with public intent envelope,
2. cryptographic satisfaction of encrypted constraints,

3. verifiability of final settlement.

5 Privacy and Constraint Enforcement

5.1 Encrypted Constraint Evaluation

JACK employs fully homomorphic evaluation over encrypted constraint vectors.
Let ¢ denote a private constraint and x a solver-generated execution parameter.
Solvers must prove:

Eval(Enc(c), z) = true

without revealing c.
The evaluation function is executed inside a privacy execution environment compatible with
encrypted computation.

5.2 Constraint Proof Object

A solver produces a proof:

1L, = Prove(Enc(c), x)

which can be verified by the kernel without decrypting c.

5.3 FHE-Based Enforcement Layer

The kernel defines a constraint circuit F' such that:

F(e,z) —{0,1}
The solver only publishes:

Enc(F(c,x))

and a validity witness.

6 Cross-Chain Routing Layer
6.1 Routing Abstraction
JACK defines a routing graph:
G = (‘/chains’ Ebridges)
Each edge contains:

e cxecution cost,

e settlement latency,

e risk weight.

Routing is performed under encrypted cost preferences.

6.2 Multi-Hop Cross-Domain Execution

Execution plans may traverse heterogeneous environments:

Chain; — Bridge; — Chaing,

without exposing path selection strategy to observers.

7 Settlement Adapter Layer

7.1 Venue Interface

Each settlement venue v implements:

Execute(v,) — tx

and exposes:
Verify(v,tz) — {0,1}

7.2 Programmable Policy Venues

Venues may embed on-chain programmable logic that enforces market and policy constraints
during execution.
In JACK, Uniswap v4 pools equipped with hooks act as policy-enforced settlement venues.

8 Policy-Enforced Market Execution

8.1 Hook as Policy Agent

Let P denote a market policy function:
P(Spool, Smarket, 0) = {allow, reject, modify}
where:
® Sp00l 1s current pool state,
® S,.arket 1S reference state,
e 0 is policy configuration.

Hooks are invoked during execution and operate as autonomous agents enforcing policy
decisions.

8.2 Dual-Agent Architecture
JACK explicitly separates:

e off-chain autonomous solvers,

e on-chain autonomous policy agents.

This creates a two-layer agentic execution system.

9 Execution Algorithm

Algorithm 1 JACK Kernel Execution
User submits intent [
Kernel publishes I, and stores Enc(Ipri,)
Solvers generate candidate plans 7
for all solver submissions do
Verify public compatibility
Verify encrypted constraint proof IL,.;,
end for
Select winning solver m*
Execute routing steps
Submit settlement to venue v
: Enforce policy via venue logic
: Verify settlement

—= = =

10 Cryptographic Verification Pipeline

10.1 Execution Correctness

An execution is valid if and only if:

Verify(priv) A Verify(v, tx)
10.2 Public Verifiability
Observers can independently verify:

e settlement correctness,
e policy execution,

e venue execution trace.

They cannot recover private intent parameters.

11 Adversarial Model
We consider:

e malicious solvers,

e adversarial observers,

e malicious routing infrastructure,

e partially malicious settlement venues.

We assume cryptographic hardness of FHE schemes and correctness of venue execution
environments.

12

1.

2.

13

Security Properties
Intent Privacy: execution constraints are hidden prior to settlement.
Solver Non-Censorship: multiple solvers compete.

Policy Enforceability: settlement cannot bypass on-chain policy logic.

. Execution Integrity: cryptographic verification binds execution to intent.

. Venue Agnosticism: kernel does not depend on specific market implementations.

New DeFi Primitive: Policy-Constrained Private Execution

We define a new primitive:
Policy-Constrained Private Execution (PCPE).
A PCPE system satisfies:

1.
2.
3.
4.

private execution strategy,
public settlement verifiability,
programmable execution rejection or modification,

cryptographically enforced constraint satisfaction.

This primitive generalizes market execution beyond swaps and enables policy-aware financial
automation.

14

15

Implementation Notes

Frontend: TypeScript, React, intent encoding

Kernel coordination: off-chain services

Smart contracts: Solidity settlement adapters

Venue policies: Uniswap v4 hooks

Encrypted constraint layer: FHE-compatible runtime

Routing: multi-chain aggregation SDKs

Evaluation and Benchmarks

We measure:

constraint evaluation latency,
solver competition throughput,
settlement overhead,

policy execution gas cost.

Preliminary experiments show that encrypted constraint evaluation dominates off-chain cost,
while on-chain policy enforcement adds bounded overhead relative to standard execution.

16 Limitations and Future Work

e scalability of FHE constraint circuits,

e decentralized solver reputation systems,
e formal verification of venue policies,

e cross-venue composability of policy logic,

e on-chain dispute resolution mechanisms.

17 Conclusion

JACK introduces a kernel abstraction for decentralized execution across heterogeneous environ-
ments. By combining encrypted intent constraints, solver-based execution, and programmable
settlement venues, JACK enables a new class of autonomous, privacy-preserving and policy-
aware DeFi systems. The architecture elevates execution itself into a programmable primitive
and positions market venues as enforceable execution controllers rather than passive liquidity
providers.

References

[1] Craig Gentry. Fully Homomorphic Encryption Using Ideal Lattices. STOC, 2009.

[2] Daian et al. Flash Boys 2.0: Frontrunning, Transaction Reordering, and Consensus Insta-
bility in Decentralized Exchanges. IEEE S&P, 2020.

[3] Uniswap Labs. Uniswap v4 Core Architecture.

	Introduction
	System Architecture
	Kernel Model

	Intent Model
	Formal Intent Definition
	Public and Private Components
	Constraint Vector

	Solver-Based Execution
	Solver Role
	Competition Model

	Privacy and Constraint Enforcement
	Encrypted Constraint Evaluation
	Constraint Proof Object
	FHE-Based Enforcement Layer

	Cross-Chain Routing Layer
	Routing Abstraction
	Multi-Hop Cross-Domain Execution

	Settlement Adapter Layer
	Venue Interface
	Programmable Policy Venues

	Policy-Enforced Market Execution
	Hook as Policy Agent
	Dual-Agent Architecture

	Execution Algorithm
	Cryptographic Verification Pipeline
	Execution Correctness
	Public Verifiability

	Adversarial Model
	Security Properties
	New DeFi Primitive: Policy-Constrained Private Execution
	Implementation Notes
	Evaluation and Benchmarks
	Limitations and Future Work
	Conclusion

