JACK: Just-in-time Autonomous Cross-chain Kernel
A Formal Architecture for Intent-Based, Privacy-Aware, and
Policy-Enforced DeFi Execution
v1.0.1

Blockchain Foundation LatAm
research@lukas.lat

February 2026

Abstract

Liquidity, execution venues, and state have fragmented across heterogeneous blockchain
ecosystems, creating a usability and safety bottleneck for decentralized finance. While
bridges, aggregators, and routers enable cross-domain value movement, they do not pro-
vide a unified execution abstraction with explicit policy enforcement and a rigorous failure
model.

This paper introduces JACK, a protocol-level execution kernel that transforms high-
level user intents into verifiable, policy-constrained execution plans and settles them on
programmable venues (e.g., Uniswap v4 hooks). JACKseparates (i) intent representation,
(ii) solver coordination, (iii) private constraint handling, (iv) routing, and (v) settlement
adapters. We formalize an execution model in which off-chain solvers compete to satisfy
intents while on-chain hooks enforce market policy at settlement time.

Scope note (v1). JACK v1.0.1is a hackathon-grade specification aligned with practical
implementation constraints: private constraints are handled via a pluggable Confidential
Constraint Module (CCM) interface (e.g., confidential execution / coprocessors) rather than
claiming production-ready FHE+ZK enforcement. Fully homomorphic evaluation and proof-
carrying constraints remain a forward-looking research direction.

Contents

1 Versioning, Scope, and Non-Goals 3
1.1 Change Log o . e 3
1.2 What is in-scope for v1 3
1.3 Non-goals for v1 e 3
1.4 vlvs. VINeXt o o e e 3

2 Introduction 3

3 Notation and Preliminaries 4

4 System Architecture 4
4.1 Kernel Model e 4

5 Intent Model 4
5.1 Formal Intent Definition 4
5.2 Public and Private Components 5
5.3 Constraint Vector e 5

6 Solver-Based Execution
6.1 Solver Role e
6.2 Competition Model
6.3 Minimal Economic Security (v1)

7 Privacy / Constraint Layer: CCM
7.1 Design Objective
7.2 CCM Interface (V1). o
7.3 FHE+ZK as Research Track

8 Cross-Chain Routing Layer
8.1 Routing Abstraction
8.2 Failure Handling (v1)
8.3 Safety Controls (v1)

9 Settlement Adapter Layer
9.1 Venue Interface L
9.2 Programmable Policy Venues oo

10 Policy-Enforced Market Execution (Uniswap v4 Hooks)
10.1 Hook as Policy Agent
10.2 Hook Security Considerations (v1)

11 Execution Algorithm

12 Verification and Observability
12.1 Execution Correctness i e e
12.2 Public Verifiability

13 Adversarial Model (Expanded)

14 Security Properties (v1)

15 PCPE: Policy-Constrained Private Execution
16 Implementation Notes (v1)

17 Evaluation Plan (v1)

18 Limitations and Future Work

19 Conclusion

10

10

1 Versioning, Scope, and Non-Goals

1.1

1.2

1.3

1.4

Change Log

v1.0.1 (Feb 2026): Clarifies v1 scope; replaces hard FHE claims with a CCM interface;
adds explicit non-goals for cross-chain atomicity; adds a minimal solver economic model;
expands threat model and hook security considerations.

v1.0.0 (Feb 2026): Initial formal architecture draft.

What is in-scope for v1

A concrete intent format with public envelope and private constraints.

Solver competition and a minimal economic security primitive (bonded execution).
Routing via existing infrastructure (e.g., LI.FI) with explicit failure handling.
Settlement on a single destination chain using programmable venues (Uniswap v4 hooks).

A pluggable privacy interface (CCM) to reduce information leakage about constraints.

Non-goals for v1

Atomic cross-chain settlement across heterogeneous finality domains.

Trustless bridge security (bridges are treated as external dependencies with allowlists
and circuit breakers).

Production-ready FHE+ZK constraint proofs (research track only).
Global solver decentralization guarantees (v1 focuses on correctness and observabil-

ity).

vl vs. vNext

Component

vNext
roadmap)

v1 (this document) (research /

Private constraints

Cross-chain execution

Solver economics

CCM interface; confidential
execution / coprocessor possi-
ble

Best-effort routing + explicit
failure states

Minimal bonded execution +

FHE+ZK proof-carrying con-
straints; threshold key mgmt

Stronger atomicity / dispute
games / optimistic safety
Auctions, staking, slashing,

Venue policy

fees
Uniswap v4 hooks enforce on-
chain policy

reputation, anti-collusion
Formal verification of policies;
registries and attestations

2 Introduction

Decentralized finance has evolved from single-chain composability into a multi-domain execution
environment. The dominant interaction paradigm remains transaction-centric: users manually
select routes, bridges, and execution venues. This model fails to scale across heterogeneous
ecosystems and exposes execution strategies to adversarial observation and manipulation [3].

JACKproposes a kernel-level abstraction in which users express execution intents rather than
transactions. Execution is delegated to autonomous solvers that compete to satisfy the intent
under constraints, while final settlement is performed by programmable on-chain execution
venues equipped with policy logic (e.g., Uniswap v4 hooks) [4]. The core design goal is to
make policy-enforced settlement explicit and verifiable, while enabling privacy-aware constraint
handling via a modular interface.

3 Notation and Preliminaries

We denote by B = {0, 1} the Boolean domain. For a probabilistic polynomial-time algorithm
A, we write y <— A(z) to denote randomized execution. Let A\ denote the security parameter.
We denote a public-key encryption scheme by PKE = (KeyGen, Enc, Dec). For fully homo-
morphic encryption, we denote FHE = (KeyGen, Enc, Eval, Dec). For a statement s and witness
w, we denote a zero-knowledge proof system by ZK = (Prove, Verify).
All cryptographic primitives are assumed to be secure against probabilistic polynomial-time
adversaries.

4 System Architecture
JACKis decomposed into five orthogonal layers:

1. Intent Layer

2. Solver and Coordination Layer

w

. Privacy / Constraint Layer (CCM)
4. Execution Routing Layer

5. Settlement Adapter Layer

4.1 Kernel Model

The JACKkernel is defined as:
K=(ZS,C,R,V)

where Z denotes intent representation, S solvers, C constraint/privacy enforcement, R routing,
and V settlement venues.

Each layer operates independently but exposes standardized interfaces. In v1, the privacy/-
constraint layer is explicitly modeled as a pluggable module.

5 Intent Model

5.1 Formal Intent Definition

An intent is:
I1=(UAT,® Q)

where U is user identifier, A target asset(s), T destination execution environment, ® private
constraint payload, and 2 public execution envelope.

5.2 Public and Private Components
We split:
e [, routing compatibility and execution metadata

e [,y constraints and preferences

I = (Ipub; Enc(Ipm,))

In v1, encryption is optional depending on CCM implementation; at minimum, the design
requires that sensitive constraints need not be publicly broadcast in cleartext.

5.3 Constraint Vector

The constraint vector may contain:
e maximum slippage bounds,
e execution deadlines,
e minimum output guarantees,
e venue policy requirements,
e routing allowlists / deny lists,

e optional compliance / disclosure flags (future work).

6 Solver-Based Execution
6.1 Solver Role
Solvers produce candidate execution plans:
T =(T1,72, ..., Tn, V)

where r; are routing/bridging steps and v is the settlement venue.
6.2 Competition Model
The kernel verifies:

1. compatibility with the public envelope,

2. satisfaction of constraints via CCM evidence,

3. verifiability of final settlement on v.
6.3 Minimal Economic Security (v1)
To reduce griefing and align incentives, v1 specifies a minimal bonded execution model:

e Users specify a max fee and deadline inside I,,,;, and sign the intent.

e Solvers register execution by posting a small bond b (testnet ETH in v1).

e If the solver fails to reach settlement before deadline (or submits invalid evidence), the
bond can be slashed (v1: retained by the protocol; vNext: redistributed to user / chal-
lengers).

e Winning solver receives the fee upon successful settlement (v1: paid by user off-chain or
via a fee vault).

This model is intentionally minimal and is designed to be replaced by auctions, staking, and
slashing in vNext.

7 Privacy / Constraint Layer: CCM

7.1 Design Objective

The constraint layer aims to reduce information leakage (e.g., slippage bounds, intent size,
routing preferences) that can be exploited for MEV or censorship, while keeping settlement
verifiable.

7.2 CCM Interface (v1)

We define a Confidential Constraint Module (CCM) interface that produces evidence of con-
straint satisfaction without requiring public disclosure of raw constraints:

CCM.Verify(Ipup, P, z) — B

where x are solver execution parameters (route, expected outputs, timing).
A CCM may be implemented by:

e Confidential execution / coprocessor producing signed attestations (v1 implementable
path).

e FHE evaluation of constraint circuits (research track) [1, 2].

e ZK proofs over committed constraints (research track).

7.3 FHE+ZK as Research Track
For completeness, a future proof-carrying variant can model constraint evaluation as:
Dec(Eval(Enc(c),x)) =1

and produce a proof IL,.;, <— Prove(Enc(c),x) that the kernel can verify. This document does
not claim that such a system is production-ready in v1.

8 Cross-Chain Routing Layer

8.1 Routing Abstraction

JACKdefines a routing graph:
G= (chhainsy Ebridges)

Edges encode cost/latency/risk attributes. In v1, routing is delegated to external routing in-
frastructure (e.g., LI.FI) and is constrained by allowlists and safety policies.

8.2 Failure Handling (v1)

Cross-domain execution is treated as best-effort and modeled explicitly as a state machine:
CREATED — QUOTED — EXECUTING — (SETTLED | ABORTED | EXPIRED)

If a bridge or step fails, the execution transitions to ABORTED with a reason code; partial com-
pletion is not treated as atomic and must be handled by application-level recovery procedures
(future work: dispute games / insurance / rollback primitives).

8.3 Safety Controls (v1)

Bridge/route allowlists.

Value caps per execution.

Circuit breaker (pause new executions).

Timeouts aligned to destination-chain finality.

9 Settlement Adapter Layer
9.1 Venue Interface

Each settlement venue v implements:

Ezxecute(v,m) — tx and Verify(v,tz) - B

9.2 Programmable Policy Venues

Uniswap v4 pools equipped with hooks act as policy-enforced settlement venues [4]. Hooks are
the on-chain controller for settlement-time policy.

10 Policy-Enforced Market Execution (Uniswap v4 Hooks)

10.1 Hook as Policy Agent
Let P denote a policy function:
P(Spool; Sref,8) = {allow, reject, modify}

Hooks can enforce constraints such as max slippage, min-out guarantees, allowlisted assets, and
oracle-based deviation checks.

10.2 Hook Security Considerations (v1)

Hooks increase attack surface. vl requires:
e Strict access control: only PoolManager may call hook entrypoints.
e No unbounded loops; bounded gas usage.
e Minimal external calls (prefer none) during hook execution.
e Correct delta accounting and reentrancy-safe design.

In vNext, we propose an audited registry of approved hooks and optional on-chain attestations.

11 Execution Algorithm

Algorithm 1 JACKKernel Execution (v1)

1: User constructs and signs intent I = (I, ®)

2: Kernel publishes I,,,;, and stores ® (optionally encrypted)
3: Solvers generate candidate plans m and parameters x

4: for all solver submissions do

5: Verify public compatibility with I,

6 Verify CCM evidence: CCM.Verify(Ipp, ®,2) =1

7: end for

8: Select winning solver 7* (by fee / time / policy)

9: Execute routing steps (best-effort) with explicit failure handling
10: Submit settlement to venue v (e.g., Uniswap v4 pool)

11: Enforce policy via hook logic

12: Verify settlement and emit public events

12 Verification and Observability

12.1 Execution Correctness

An execution is valid if:
CCM.Verify(-) =1 A Verify(v,tz) =1

12.2 Public Verifiability

Observers can verify:
e settlement correctness and venue trace,
e policy hook decision path (events / revert codes),
e execution state transitions.

Private constraints remain opaque to the extent provided by the CCM.

13 Adversarial Model (Expanded)

We consider:
e Malicious solvers: invalid routes, censorship, griefing, collusion, Sybil attacks.
e Adversarial observers: MEV extraction, timing inference, metadata leakage.
¢ Routing/bridge failures: exploits, message verification bugs, compromised keys.
e Malicious venues/hooks: access control failures, reentrancy, DoS via gas exhaustion.
e Oracle manipulation: reference price distortion affecting policy checks.

We assume cryptographic hardness where used; in v1, trust assumptions depend on CCM
implementation (e.g., coprocessor attestations).

14 Security Properties (v1)
1. Policy Enforceability: settlement cannot bypass on-chain hook policy.
2. Execution Integrity: kernel binds settlement to a signed intent and verified evidence.
3. Fail-Closed Behavior: executions abort on missing evidence or policy violations.
4. Risk Containment: allowlists, caps, and circuit breakers limit blast radius.
5. Privacy-Awareness: sensitive constraints need not be publicly broadcast in cleartext.
15 PCPE: Policy-Constrained Private Execution
We define Policy-Constrained Private Execution (PCPE) as an execution primitive that pro-
vides:
1. private constraints (via CCM),
2. public settlement verifiability,
3. programmable policy rejection or modification at settlement,
4. bounded failure handling semantics.
16 Implementation Notes (v1)

e Frontend: TypeScript, React / Next.js, wallet connection.

e Kernel coordination: off-chain services (intent store, solver coordination).

e Smart contracts: Solidity settlement adapters + Uniswap v4 hooks.

e Privacy/constraints: CCM interface; prototype may use confidential execution attesta-

tions.

e Routing: LL.FI or equivalent aggregation SDK; explicit allowlists and caps.

17

Evaluation Plan (v1)

We measure:

e end-to-end latency (intent — settlement),

policy hook gas overhead and revert rate,

solver throughput and failure modes,

e CCM verification latency (attestation/proof verification),

routing success rate under degraded conditions.

18 Limitations and Future Work

Production-grade economic security (auctions, staking, slashing).

Decentralized solver sets and anti-collusion mechanisms.

Formal verification and auditing frameworks for hook policies.

Stronger cross-domain atomicity / dispute resolution / insurance primitives.

Proof-carrying private constraints (FHE+ZK) with practical performance.

19 Conclusion

JACKpositions execution itself as a programmable primitive: users submit intents, solvers
compete to execute them, and settlement venues enforce policy via hooks. JACK v1.0.1lexplicitly
scopes vl to practical, verifiable components while preserving a research path toward stronger
private constraint proofs and cross-domain safety guarantees.

References

[1] Craig Gentry. Fully Homomorphic Encryption Using Ideal Lattices. In Proceedings of the
41st Annual ACM Symposium on Theory of Computing (STOC), 2009.

[2] Haria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachéne. TFHE: Fast
Fully Homomorphic Encryption over the Torus. Journal of Cryptology, 33(1), 2020.

[3] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Ittay Eyal, and
Emin Giin Sirer. Flash Boys 2.0: Frontrunning, Transaction Reordering, and Consensus
Instability in Decentralized Exchanges. In IEEE Symposium on Security and Privacy, 2020.

[4] Uniswap Labs. Uniswap v4 Core Architecture. https://github.com/Uniswap/v4-core,
2024.

[5] Flashbots. MEV-Boost: Scaling Blockspace by Separating Proposers and Builders. https:
//docs.flashbots.net/flashbots-mev-boost/, 2022.

[6] CoW Protocol. CoW Protocol: Batch Auctions and Solver Competition (Docs). https:
//docs.cow.fi/, 2024.

[7] Uniswap Labs. UniswapX (Docs). https://docs.uniswap.org/uniswapx/overview,
2024.

10

https://github.com/Uniswap/v4-core
https://docs.flashbots.net/flashbots-mev-boost/
https://docs.flashbots.net/flashbots-mev-boost/
https://docs.cow.fi/
https://docs.cow.fi/
https://docs.uniswap.org/uniswapx/overview

	Versioning, Scope, and Non-Goals
	Change Log
	What is in-scope for v1
	Non-goals for v1
	v1 vs. vNext

	Introduction
	Notation and Preliminaries
	System Architecture
	Kernel Model

	Intent Model
	Formal Intent Definition
	Public and Private Components
	Constraint Vector

	Solver-Based Execution
	Solver Role
	Competition Model
	Minimal Economic Security (v1)

	Privacy / Constraint Layer: CCM
	Design Objective
	CCM Interface (v1)
	FHE+ZK as Research Track

	Cross-Chain Routing Layer
	Routing Abstraction
	Failure Handling (v1)
	Safety Controls (v1)

	Settlement Adapter Layer
	Venue Interface
	Programmable Policy Venues

	Policy-Enforced Market Execution (Uniswap v4 Hooks)
	Hook as Policy Agent
	Hook Security Considerations (v1)

	Execution Algorithm
	Verification and Observability
	Execution Correctness
	Public Verifiability

	Adversarial Model (Expanded)
	Security Properties (v1)
	PCPE: Policy-Constrained Private Execution
	Implementation Notes (v1)
	Evaluation Plan (v1)
	Limitations and Future Work
	Conclusion

