JACK: Just-in-time Autonomous Cross-chain Kernel
A Formal Architecture for Intent-Based, Privacy-Aware, and
Policy-Enforced DeFi Execution
v1.0.2

Blockchain Foundation LatAm
research@lukas.lat

February 2026

Abstract

Liquidity, execution venues, and state have fragmented across heterogeneous blockchain
ecosystems, creating a usability and safety bottleneck for decentralized finance. While
bridges, aggregators, and routers enable cross-domain value movement, they do not pro-
vide a unified execution abstraction with explicit policy enforcement and a rigorous failure
model.

This paper introduces JACK, a protocol-level execution kernel that transforms high-
level user intents into verifiable, policy-constrained execution plans and settles them on
programmable venues (e.g., Uniswap v4 hooks). JACKseparates (i) intent representation,
(ii) solver coordination, (iii) private constraint handling, (iv) routing, and (v) settlement
adapters.

Scope note (v1). JACK vl.0.2remains a practical, implementation-aligned specifi-
cation. Private constraints are handled via a pluggable Confidential Constraint Module
(CCM) interface, while stronger FHE+ZK enforcement remains a forward-looking research

direction.
Contents
1 Versioning, Scope, and Non-Goals 3
1.1 Change Log« . o e 3
1.2 What is in-scope for v1 3
1.3 Non-goals for v1 e 3
1.4 vlvs. vINeXt e e 3
2 Introduction 4
3 Notation and Preliminaries 4
4 System Architecture 4
4.1 Kernel Model e 4
5 Reference Implementation Mapping (v1.0.2) 4
51 Control Plane and APIs 4
5.2 Deterministic Quote Contract 5
6 Intent Model 5
6.1 Formal Intent Definition 5
6.2 Public and Private Components Lo 5

7 Solver-Based Execution

7.1 Competition Model
7.2 Minimal Economic Security (v1)

8 Privacy / Constraint Layer: CCM

8.1 CCM Interface
8.2 Implementation Paths

9 Routing and Provider Integration

9.1 Routing Graph
9.2 Yellow Notification Integration
9.3 Failure Model

10 Settlement Adapter Layer

11 Process Diagrams

11.1 Intent Execution Lifecycle . .
11.2 Quote and Fallback Flow . .

12 Execution Algorithm

13 Verification and Observability

13.1 Execution Correctness
13.2 Operational Evidence

14 Adversarial Model

15 Security Properties (v1)

16 Evaluation Plan (v1.0.2)

17 Limitations and Future Work

18 Conclusion

1 Versioning, Scope, and Non-Goals

1.1

1.2

1.3

1.4

Change Log

v1.0.2 (Feb 2026): Adds implementation-aligned details for LI.FI quote/route/status
integration, Yellow Network provider notifications/auth persistence flow, deterministic
/api/quote semantics with explicit fallback mode, and production process diagrams.

v1.0.1 (Feb 2026): Clarified v1 scope; replaced hard FHE claims with CCM interface;
added explicit non-goals for cross-chain atomicity; added minimal solver economic model;
expanded threat model and hook security considerations.

v1.0.0 (Feb 2026): Initial formal architecture draft.

What is in-scope for v1
Concrete intent format with public envelope and private constraints.
Solver competition with minimal economic security primitive (bonded execution).

Routing via existing infrastructure (LI.FI) with explicit failure handling and deterministic
API contracts.

Settlement on a single destination chain using programmable venues (Uniswap v4 hooks).
Pluggable privacy interface (CCM) to reduce information leakage.

Provider event ingestion and persistence for execution observability (Yellow Network in-
tegration).

Non-goals for v1

Atomic cross-chain settlement across heterogeneous finality domains.

Trustless bridge security (bridges are treated as external dependencies with allowlists
and circuit breakers).

Production-grade FHE-+ZK constraint proofs.
Global solver decentralization guarantees (v1 prioritizes correctness and observabil-

ity).

vl vs. vNext

Component vl (this document) vNext (research /

roadmap)

Private constraints CCM interface; confiden- FHE+ZK proof-carrying con-

tial execution/coprocessor straints; threshold key mgmt
possible

Cross-chain execution Best-effort routing + explicit Stronger atomicity /dispute

failure states games/optimistic safety

Solver economics Minimal bonded execution 4+ Auctions, staking, slashing,

fees anti-collusion

Venue policy Uniswap v4 hooks enforce pol- Formal verification and hook

icy attestation registries

Provider telemetry Yellow notifications and per- Multi-provider reconciliation

sistence and cryptographic attestations

2 Introduction

DeFi execution has moved from single-chain composability to a multi-domain environment where
users must still manually choose routes, bridges, and venues. This transaction-centric model
does not scale and is vulnerable to adversarial observation and manipulation [3].

JACKintroduces an intent-first kernel: users specify what they want, solvers compete to
provide an execution plan, and settlement-time policies are enforced on-chain (e.g., via Uniswap
v4 hooks) [4]. The design objective is verifiable settlement with explicit failure semantics and
pluggable privacy.

3 Notation and Preliminaries

Let B = {0,1} be the Boolean domain. For probabilistic polynomial-time algorithm A, write
y < A(z). Let X denote the security parameter.

We denote public-key encryption as PKE = (KeyGen, Enc, Dec), fully homomorphic encryp-
tion as FHE = (KeyGen, Enc, Eval, Dec), and zero-knowledge proof systems as ZK = (Prove, Verify).

4 System Architecture

JACKis decomposed into five orthogonal layers:
1. Intent Layer
2. Solver and Coordination Layer
3. Privacy / Constraint Layer (CCM)

4. Execution Routing Layer

5. Settlement Adapter Layer

4.1 Kernel Model
K=(Z,S8,C,R,V)

where Z denotes intent representation, S solver coordination, C privacy/constraint enforce-
ment, R routing, and V settlement venues.
5 Reference Implementation Mapping (v1.0.2)

5.1 Control Plane and APIs

The current implementation maps architecture layers into operational API surfaces:

Layer Interface Behavior in v1.0.2

Intent Layer /api/intents Create/list intents, persist lifecy-
cle metadata, normalize execu-
tion context.

Routing Layer /api/quote + LI.LFI SDK Deterministic quote schema, ex-
plicit fallback mode when up-
stream quote/route/status calls

fail.
Provider Telemetry Yellow provider notifica- Authenticated notification inges-
tions tion, persistence, and replay-safe
lifecycle updates.
Settlement Layer Adapter 4+ hook contracts ~ Submit settlement transaction

and verify policy constraints dur-
ing execution.

Observability Intent state records Canonical state machine trace for
created /quoted /executing/set-
tled/aborted /expired.

5.2 Deterministic Quote Contract
For a request ¢, the quote endpoint returns:
QuoteResult(¢) = (mode, route, reasonCode, expiresAt)

where mode is either provider or fallback. This creates explicit downstream semantics for Ul
and solver behavior without silent partial failures.

6 Intent Model

6.1 Formal Intent Definition

An intent is:
I1=(UAT,® Q)
where U is user identifier, A target asset set, T destination execution environment, ® private

constraint payload, and €2 public execution envelope.

6.2 Public and Private Components

I = (Ipuba Enc(Ipm-U))

In v1, encryption may be omitted depending on CCM implementation, but sensitive con-
straints should not be publicly broadcast in cleartext.

7 Solver-Based Execution
7.1 Competition Model
For candidate plan 7, the kernel verifies:
1. compatibility with Ip,
2. satisfaction of constraints via CCM evidence,

3. verifiability of final settlement on venue v.

7.2 Minimal Economic Security (v1)

e User signs intent with max fee and deadline.
e Solver registers execution with bond b.
e Invalid or expired execution can trigger slash path.

e Winner receives fee after verified settlement.

8 Privacy / Constraint Layer: CCM

8.1 CCM Interface
CCM.Verify(Ipyp, @, 2) — B

where x are solver execution parameters (route, expected output, timing).

8.2 Implementation Paths

e Confidential execution/coprocessor with signed attestations (v1 path).
e FHE evaluation of constraint circuits (research track) [1, 2].

e ZK proofs over committed constraints (research track).

9 Routing and Provider Integration

9.1 Routing Graph
G = (chhainsv EbridgES)

Edges encode cost, latency, and risk. In v1, route planning is delegated to LI.FI infrastruc-
ture with protocol-side allowlists and caps [5].

9.2 Yellow Notification Integration

Yellow provider callbacks are authenticated and persisted before state transitions. This creates
an append-only event trace used to reconcile provider state and API state [6].

9.3 Failure Model
Cross-domain execution is best-effort:
CREATED — QUOTED — EXECUTING — (SETTLED | ABORTED | EXPIRED)

Provider or bridge faults transition to ABORTED with explicit reason codes. Partial completion
is not treated as atomic.

10 Settlement Adapter Layer
Each venue v implements:
Ezxecute(v,m) — tx and Verify(v,tz) - B

Uniswap v4 pools with hooks act as policy-enforced settlement venues [4].

11 Process Diagrams

11.1 Intent Execution Lifecycle

CREATED QUOTED EXECUTING SETTLED

deadline E E provider/bridge/policy fail

EXPIRED ABORTED

Figure 1: Canonical lifecycle enforced by JACK state transitions.

11.2 Quote and Fallback Flow

[/api/quote request]

Y

[LI.FI quote/route/status Call]

Provider valid?

[Return mode=provider]
with reason code

[Return mode=fa11back]

Figure 2: Deterministic quote response behavior with explicit fallback mode.

12 Execution Algorithm

Algorithm 1 JACKKernel Execution (v1)

User constructs and signs intent I = (I,)
API stores intent and requests quote from LI.FI provider path
If provider quote invalid, return deterministic fallback quote result
Solvers submit candidate plans m with parameters x
for all solver submissions do
Verify public compatibility with I,
Verify CCM evidence: CCM.Verify(Ipp, ®,2) =1
end for
Select winning solver m* under fee and policy constraints
Execute routing (best-effort) and ingest Yellow provider notifications
: Submit settlement to venue v and enforce hook policy
. Persist terminal state and emit public events

— = =

13 Verification and Observability

13.1 Execution Correctness

CCM.Verify(-) =1 A Verify(v,tz) =1

13.2 Operational Evidence

Observers can verify:

e deterministic quote mode and reason codes,
e lifecycle transitions with persisted provider notifications,

e settlement correctness and hook-level policy decisions.

14 Adversarial Model

We consider:

e malicious solvers (invalid routes, griefing, censorship),

e adversarial observers (MEV, timing inference),

e routing/provider failures (outages, stale routes, auth failures),

e malicious venue/hook logic (access control or reentrancy defects),

e oracle manipulation affecting policy checks.

15 Security Properties (v1)

1. Policy enforceability: settlement cannot bypass on-chain hook policy.
Execution integrity: execution is bound to signed intent and verified evidence.
Fail-closed behavior: missing evidence or policy violations abort execution.

Deterministic APIs: quote response mode is explicit and machine-checkable.

RATEEE el R

Risk containment: allowlists, caps, and circuit breakers limit blast radius.

16

Evaluation Plan (v1.0.2)

Measure:

17

18

intent-to-settlement latency,

provider success vs fallback rate for /api/quote,

yellow notification ingestion latency and replay rejection rate,
hook gas overhead and policy rejection rate,

route success under degraded bridge/provider conditions.

Limitations and Future Work

stronger economic security (auctions, staking, slashing),
decentralized solver participation and anti-collusion mechanisms,
formal verification and attestation registries for hooks,
cross-domain atomicity/dispute mechanisms,

production-ready proof-carrying private constraints.

Conclusion

JACKtreats execution as a programmable primitive: users submit intents, solvers compete to
satisfy them, routing is delegated with deterministic contracts, and on-chain venues enforce pol-
icy at settlement. Version v1.0.2aligns the specification with the implemented LI.FI and Yellow
provider flows while preserving a clear path to stronger privacy and cross-domain guarantees.

References

1]

2]

Craig Gentry. Fully Homomorphic Encryption Using Ideal Lattices. In Proceedings of the
41st Annual ACM Symposium on Theory of Computing (STOC), 2009.

Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachéne. TFHE: Fast
Fully Homomorphic Encryption over the Torus. Journal of Cryptology, 33(1), 2020.

Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Ittay Eyal, and
Emin Giin Sirer. Flash Boys 2.0: Frontrunning, Transaction Reordering, and Consensus
Instability in Decentralized Exchanges. In IEEE Symposium on Security and Privacy, 2020.

Uniswap Labs. Uniswap v4 Core Architecture. https://github.com/Uniswap/v4-core,
2024.

LL.FI. L1.FT Integrator Documentation. https://docs.1i.fi/, 2026.

Yellow Network. Yellow Network Provider and Notification Documentation. https://
docs.yellow.org/, 2026.

https://github.com/Uniswap/v4-core
https://docs.li.fi/
https://docs.yellow.org/
https://docs.yellow.org/

	Versioning, Scope, and Non-Goals
	Change Log
	What is in-scope for v1
	Non-goals for v1
	v1 vs. vNext

	Introduction
	Notation and Preliminaries
	System Architecture
	Kernel Model

	Reference Implementation Mapping (v1.0.2)
	Control Plane and APIs
	Deterministic Quote Contract

	Intent Model
	Formal Intent Definition
	Public and Private Components

	Solver-Based Execution
	Competition Model
	Minimal Economic Security (v1)

	Privacy / Constraint Layer: CCM
	CCM Interface
	Implementation Paths

	Routing and Provider Integration
	Routing Graph
	Yellow Notification Integration
	Failure Model

	Settlement Adapter Layer
	Process Diagrams
	Intent Execution Lifecycle
	Quote and Fallback Flow

	Execution Algorithm
	Verification and Observability
	Execution Correctness
	Operational Evidence

	Adversarial Model
	Security Properties (v1)
	Evaluation Plan (v1.0.2)
	Limitations and Future Work
	Conclusion

